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Abstract Cooperationbetweenunmannedautonomous
systems has attracted increasing attention in recent
years, particularly the challengingproblemofunmanned
aerial vehicle (UAV) and unmanned ground vehi-
cle (UGV) docking in complex environments with
dynamic vehicle interactions. This paper proposes
a novel finite-time reinforcement learning control
scheme for UAV–UGV docking based on a pursuit-
evasion game framework. A pursuit-evasion game for-
mulation is developed where the evader vehicle navi-
gates through complex environments while being pur-
sued by a pursuer vehicle required to track and dock
with it. The docking performance is optimized through
achieving Nash equilibrium of the pursuit-evasion
game. The proposed finite-time reinforcement learn-
ing algorithm transforms the value function to finite-
time space and employs Actor-Critic neural networks
to approximate the value function and optimal con-
troller. A finite-time concurrent learning law is utilized
to update the neural networkweights, ensuring both the
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pursuit-evasion game equilibrium and learning process
converge within finite time. Lyapunov stability anal-
ysis proves the finite-time convergence properties of
the algorithm. Experimental validation on an aerial-
ground vehicle system demonstrates the effectiveness
of the proposed approach in achieving optimal pursuit-
evasion performance while maintaining safe landing
capability.

Keywords Unmanned aerial vehicle · Unmanned
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1 Introduction

The cooperation between unmanned aerial vehicles
(UAVs) and unmanned ground vehicles (UGVs) has
garnered increasing attention in recent years due to
its potential to enhance system performance [1,2],
operational flexibility [3], and system robustness [4].
Among various challenges in UAV–UGV cooperation,
the docking control problem [5] remains one of the
most critical yet difficult tasks, where vehicles must
navigate through complex environments to establish
stable connections for payload transfer or battery charg-
ing [6]. The complexity arises from multiple factors:
dynamic interactions between vehicles [7,8], environ-
mental uncertainties affecting UAV [9,10], uneven ter-
rain impacting UGV [11], and obstacles in the envi-
ronment [12]. These challenges necessitate sophisti-
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cated control strategies to ensure successful docking
operations. While several interaction frameworks have
been proposed to address these challenges, including
robust control [13], hierarchical control [14], coopera-
tive game theory [15], and reinforcement learning [16].
However, existing approaches often require long con-
vergence times and lack finite-time guarantees, limit-
ing their applicability to time-critical applications like
UAV–UGV docking [7,17].

The pursuit-evasion game (PEG) framework offers
a rigorous mathematical foundation for analyzing such
dynamic multi-agent interactions [18,19]. In this for-
mulation, two agents with competing objectives inter-
act: an evader that navigates through the environment
while attempting to evade, and a pursuer that aims
to intercept and capture the evader. The PEG frame-
work has demonstrated success across various domains
including security systems [20], robotics [21], and dif-
ferential game theory [15]. For the UAV–UGV dock-
ing problem, PEG provides an elegant solution where
the UAV acts as the evader navigating through complex
environments while being pursued by the UGVpursuer
for tracking and docking [22,23]. Compared to tradi-
tional control strategies, PEG offers a more robust and
efficient approach to optimizing docking performance
[1,2]. This game-theoretic approach enables system-
atic analysis and optimization of vehicle interactions
through Nash equilibrium solutions [18,24]. How-
ever, existing PEG-based approaches mainly focus on
homogeneousmulti-agent systemswith simple interac-
tion dynamics [25], and lack practical implementation
strategies for complex UAV–UGV docking scenarios
[26,27].

Adaptive dynamic programming and reinforcement
learning (ADP&RL) has emerged as a powerful tool
for learning optimal control policies in complex and
uncertain environments [28,29]. Traditional ADP&RL
methods have achieved remarkable success in robotics,
autonomous driving, and UAV control [30,31], par-
ticularly through model-free approaches that don’t
require explicit system dynamics [32,33]. However,
these methods typically require infinite time horizons
to theoretically guarantee optimality [34,35], and lack
explicit convergence time bounds needed for safety-
critical operations [8,22]. These limitations have moti-
vated the development of finite-time reinforcement
learning (FT-RL) algorithms [36,37]. The key inno-
vation of FT-RL lies in transforming the value func-
tion into finite-time space while maintaining the learn-

ing capabilities of traditional RL. This transformation
enables critical advantages in finite-time convergence
[38], and provable stability properties [39,40]. This
makes FT-RL well-suited for time-critical applications
like UAV–UGV docking. Recent advances in FT-RL
have demonstrated promising results for multi-agent
systems [41,42] and game scenarios [9,19]. However,
most existing FT-RL approaches focuses on simpler
interaction scenarios without considering the full com-
plexity of aerial-ground vehicle coupling, Also, reg-
ular current learning architectures may not efficiently
capture the unique dynamics of pursuit-evasion games,
and finite-time convergence guarantees are often lim-
ited to specific system classes rather than general game-
theoretic frameworks [43,44].

To overcome these limitations, this paper pro-
poses a novel finite-time reinforcement learning with
pursuit-evasion game equilibrium guidance (FT-RL-
PEG) scheme. The key innovation lies in reformulat-
ing the optimal control problem to ensure both the
pursuit-evasion game equilibrium and learning process
converge within an analytically bounded time horizon
compared to regular ADP&RL algorithms [20,29,31].
The framework employs an actor-critic architecture
where the critic network approximates the finite-time
value function while the actor network learns the opti-
mal control policy [8,28,36]. A carefully designed
finite-time concurrent learning law updates neural net-
work weights with provable convergence properties
[22,41,42]. Through rigorous Lyapunov stability anal-
ysis, we establish theoretical guarantees on the finite-
time convergence of both value function approxima-
tion and optimal control policy [1,39,45]. This enables
achieving optimal performance within predefined time
bounds—a critical capability for practical UAV–UGV
docking applications requiring rapid and reliable con-
vergence [2,43,46]. Motivated by the above challenges
posed byUAV–UGVdocking, this papermakes the fol-
lowing contributions:

(1) Anovel PEGframework is developed for unmanned
aerial-ground vehicle docking, where the evader
vehicle navigates through complex environments
while being pursued by a pursuer vehicle required
to track and dockwith it. The docking performance
is optimized through achieving Nash equilibrium
of the PEG, which is more robust and efficient than
traditional docking control strategies [1,2,8,22].
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(2) A novel FT-RL framework is proposed to inte-
grate PEGwith finite-time learning. Our work pro-
vides a unified approach that overcomes previous
theoretical gap between game theory and FT-RL
[29,37]. By combining the stability guarantees of
FT-RLwith the competitive equilibrium properties
of PEG, our framework ensures finite-time conver-
gence with provable stability guarantees for real-
time equilibrium solving and learning, overcoming
the infinite-horizon limitations of traditional meth-
ods [8,22].

(3) Comprehensive numerical simulations and exper-
imental validation on an real-world aerial-ground
vehicle system demonstrate the effectiveness of the
proposed approach in achieving optimal pursuit-
evasion performance while maintaining safe land-
ing capability, while Lyapunov stability analysis
proves the finite-time convergence properties of the
algorithm [1,39,45].

The rest of this paper is organized as follows: Sec-
tion 2presents systemdynamics andfinite-timeoptimal
control problem. Section 3 introduces the proposed FT-
RL-PEG algorithm. Sections 4 and 5 provide simula-
tion examples and hardware experiments to verify the
effectiveness of FT-RL-PEG scheme. Section 6 con-
cludes the paper.

Notation: In this paper, R denotes the set of real
numbers, R

n denotes the n-dimensional Euclidean
space, Rn×m denotes the set of n × m real matri-
ces, N denotes the set of natural numbers, † denotes
the Moore–Penrose pseudo-inverse, ‖ · ‖ denotes the
Euclidean norm, sign(·) denotes the sign function,
sigα(·) = | · |α sgn(·) denotes the fractional power
signum function, tanh(·) denotes the hyperbolic tan-
gent function,

2 Preliminaries

2.1 System description

The interconnected pursuit-evasion system is com-
posed of evader and pursuer agents, where the evader
agent navigates through complex environments while
being pursued by the pursuer agent, and the pursuer
agents track and capture the evader agents. Consider
single evader and single pursuer with the following
nonlinear affine input dynamics:

{
ẋe(t) = fe(xe(t)) + ge(xe(t))Ue(t)

ẋ p(t) = f p(xp(t)) + gp(xp(t))Up(t)
(1)

where xe ∈ R
ne , xp ∈ R

n p denote the states of
the evader and the pursuer, respectively, Ue ∈ R

me ,
Up ∈ R

mp denote the control inputs, fe : Rne → R
ne ,

f p : R
n p → R

n p denote the drift dynamics, and
ge : R

ne → R
ne×me , gp : R

n p → R
n p×mp denote

the control effectiveness matrices. The evader and the
pursuer are connected by a communication channel,
which transmits the real-time state information of the
evader to the pursuer. Assume that the communication
channel is ideal, i.e., the evader’s state information can
be transmitted to the pursuer without any delay or loss.
For the pursuer, to track the evader agent, The tracking
error is defined as x = xp − xe. The tracking error
dynamics is derived as:

ẋ(t) =ẋ p(t) − ẋe(t)

= f p(xp) − fe(xe) + gp(xp)Up(t) − ge(xe)Ue(t)

= f (x) + g(x)Up + k(x)Ue (2)

where f (x) = f p(xp) − fe(xe), g(x) = gp(xp), and
k(x) = −ge(xe) represent the drift dynamics and con-
trol effectiveness matrices of the error system.

2.2 Optimal control problem

First, we define the following cost function:

Vi (x,Up,Ue) =
∫ ∞

0
ri
(
x(τ ),Up(τ ),Ue(τ )

)
dτ,

i = p, e (3)

where the control inputs Ui (t) are constrained within
symmetric bounds μi , i.e., −μi ≤ Ui (t) ≤ μi . The
instantaneous reward function ri (x,Up,Ue) for the i-
th player is defined as:

rp(x,Up,Ue) = −re(x,Up,Ue)

=
(
x�ωx

)α + �p(Up) − �e(Ue)

(4)

where ω = Qi ∈ R
n×n is a positive definite weight

matrix, 0 < α < 1 is a fractional order, and �i (Ui ) is
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the penalty function for the control input, which penal-
izes large control signals and helps maintain stability
[44]:

�i (Ui ) = 2μi Ri

∫ Ui

0
tanh−1

(
γ

μi

)
dγ, i = p, e

(5)

where Ri ∈ R
mi×mi is a positive definite weight matrix

that penalizes control effort, and γ is the integration
variable. This penalty function grows rapidly as control
inputs approach the saturation bounds±μi , effectively
preventing control saturation. To facilitate the subse-
quent analysis and controller design for the dynamics
(2), we make the following assumption and definition
for the pursuit-evasion game of a two-player system.

Assumption 2.1 (Lipschitz Continuity and Bound-
edness [16,43]) For thepursuit-evasion systemdynam-
ics (2), the following conditions hold:

(1) For any tight set x ∈ χ ⊂ R
n :

• The drift dynamics f (x) is Lipschitz continu-
ous with f (0) = 0

• The control effectiveness matrices gi (x) are
Lipschitz continuous and bounded: ‖gi (x)‖ ≤
GHi

(2) The cost matrices satisfy uniform boundedness
conditions:

• State cost: 0 ≤ λQi
≤ λmin(Qi ) ≤ λmax(Qi ) ≤

λ̄Qi

• Control cost: 0 ≤ λRi j ≤ λmin(Ri j ) ≤
λmax(Ri j ) ≤ λ̄Ri j

where {λQi
, λRi j , λ̄Qi , λ̄Ri j } are positive constants.

Definition 1 (Nash Equilibrium [18,24]) Consider
the pursuit-evasion game (PEG) system (2) with con-
trol inputs {Up,Ue}. A Nash equilibrium is achieved
if:

{
V ∗
p (x) = Vp

(
x,U ∗

p ,U ∗
e
) ≤ Vp

(
x,Up,U

∗
e
)
, ∀Up ∈ 	U

V ∗
e (x) = Ve

(
x,U ∗

p ,U ∗
e
) ≤ Ve

(
x,U ∗

p ,Ue
)
, ∀Ue ∈ 	U

(6)

where V ∗
i (x) denotes the optimal value function for

the i-th player at Nash equilibrium {V ∗
p ,V ∗

e }.

The optimal value function V ∗
i (x) satisfies:

V ∗
i (x) =

∫ ∞

t
ri
(
x(τ ),U ∗

p (τ ),U ∗
e (τ )

)
dτ, i = p, e,

(7)

where 	U ⊂ R
m denotes the admissible control input

set. The correspondingHamilton function is defined as:

Hi (x,Up,Ue,∇V ∗
i ) = ri (x,Up,Ue)

+∇V ∗�
i ( f + gUp + kUe) (8)

where ∇V ∗
i = ∂V ∗

∂x represents the optimal value func-
tion gradient. By solving the extreme condition of (14)
and (8), the Nash equilibrium control input is derived
as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U ∗
p (x) = argmin

U p∈	U

Hp = −μp tanh

(
R−1
p g�
2μp

∇V ∗�
p

)

U ∗
e (x) = argmin

U e∈	U

He = μe tanh

(
R−1
e k�
2μe

∇V ∗�
e

) (9)

Combining the Nash equilibrium control input (9)
with the optimal value function (14), the Hamilton–
Jacobi–Issac (HJI) equation is derived as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 =∇V ∗�
p ( f + gUp + kUe)︸ ︷︷ ︸

Dynamics term

+�p(Up) − �e(Ue)︸ ︷︷ ︸
Input penalty

+|x |αω︸︷︷︸
State cost

0 = − ∇V ∗�
e ( f + gUp + kUe)︸ ︷︷ ︸

Dynamics term

+ �p(Up) − �e(Ue)︸ ︷︷ ︸
Input penalty

−|x |αω︸︷︷︸
State cost

(10)

The optimal controller defined in Eq. (9) is designed
to stabilize the system states at the optimal equilibrium
point, as defined in Eq. (14). However, it should be
noted that the performance of the optimal controller is
not guaranteed. The next subsection will introduce the
FT optimal controller, which is capable of achieving
FT stabilization control of the system, as defined in
Eq. (2).

2.3 Transformed finite-time value function

To achieve finite-time stabilization of system states, we
first transform the value function into finite-time (FT)
stable space. We begin by presenting two key defini-
tions that characterize the FT stability properties.
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Definition 2 (Finite-Time Stability) The system
state x(t) of (2) is finite-time stable with respect to
equilibrium point x∗ if there exists a settling time
T [x(0)] ∈ (0,∞) such that:

V {x(t f ), x∗} ≤ δ, ∀δ > 0, ∀t f ≥ T [x(0)]
where V {x(t), x∗} : 	n → [0, LV ] is a smooth dis-
tance function.

Definition 3 (Finite-Time Value Function) A finite-
time value function �i (x, x∗) ≥ 0 satisfies:

(1) ∇�i (x∗, x∗) = 0 at equilibrium
(2) ∇2�i ≥ 0 for all x ∈ 	n

where 	n = {x ∈ R
n | V (x, x∗) ≤ LV } defines the

state space neighborhood.

To derive the FT optimal controller, we transform
the asymptotic value function Vi (x) from (7) into FT
space using:

Vi {x, x∗} =
∫ x∗

x
sig

α
2 (∇�i (ζ, x∗))dζ, i = p, e(11)

where sig
α
2 (·) = | · | α

2 sgn(·) is the fractional power
signum function, α ∈ (0, 1) is the fractional order
parameter, sgn(·) is the sign function, and ∇�i (x, x∗)
is the gradient of the FT value function.

This transformation ensures finite-time convergence
properties while maintaining smoothness of the value
function. With the transformed value function (11) in
the FT stable space, we derive the corresponding trans-
formed FT Hamiltonian function:

Hi
(
x, x∗,Up,Ue,∇�i

)
= sig

α
2 (∇�i )

�( f + gUp + kUe)

+ ri (x,Up,Ue), i = p, e (12)

The FT optimal controller can be obtained by solv-
ing the extremum condition of the transformed Hamil-
tonian function (12):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
U ∗

p (x) = − μp tanh

(
R−1
p g�

2μp
sig

α
2 (∇�∗�

p )

)

U ∗
e (x) =μe tanh

(
R−1
e k�

2μe
sig

α
2 (∇�∗�

e )

) (13)

where U ∗
p (x) represents the optimal pursuit control

and U ∗
e (x) denotes the optimal evasion control. The

optimal controller (13) is designed to stabilize the sys-
tem states at the optimal equilibrium point with finite-
time convergence guarantees through the transformed
value function (11). To implement this controller in
practice, we need to approximate both the finite-time
value function and optimal control policy. This moti-
vates the development of our FT-RL-PEG algorithm
presented in the next section.

3 Main result: FT-RL-PEG algorithm

3.1 Approximation of finite-time value function

To approximate the FT optimal value function and
optimal controller with identified system dynamics,
actor and critic neural networks (NN) are employed
to approximate the value function and the optimal con-
troller, respectively. First, the following critic NN is
designed to approximate the value function in the FT
stable space:

V ∗
i (x) = W ∗

ci
�
ψi (x) + ε∗

i (x), i = p, e (14)

where W ∗
ci denotes the optimal weights of the critic

NN, ψi (x) ∈ R
N represents the basis function of the

critic NN, and ε∗
i (x) indicates the approximation error.

The critic NN is estimated in practice as:

V̂i (x) = Ŵ�
ci ψi (x) + εi (x), i = p, e (15)

where Ŵci represents the estimatedweights of the critic
NN. By substituting (15) into the Hamiltonian function
(12), the Hamilton–Jacobi–Issac (HJI) equation with
optimal approximation becomes:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 =(W ∗�
cp ∇ψp + ∇ε∗

p)( f + gUp + kUe)

+ |x |αω + �p(Up) − �e(Ue)

0 = − (W ∗�
ce ∇ψe + ∇ε∗

e )( f + gUp + kUe)

− |x |αω + �p(Up) − �e(Ue)

(16)

where �ik(Uk) denotes the penalty of the k-th control
input to i-th player. To estimate the critic NN weights,
we design an actor NN to approximate the optimal con-
troller:

�̂i (x) = Ŵ�
aiφi (x), i = p, e (17)

where φi (x) represents the basis function of the actor
NN, and Ŵai denotes the actor NN weights. The actor
NN satisfies the transformed value function derivative
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condition: ∇2�i = Ŵ�
ai∇2φi (x) ≥ 0,∀x ∈ 	n , as

stated in Definition 3. The Hamilton function (12) can
then be expressed as the HJI equation residual error
δH :

δHp =
{
(Ŵcp − W ∗

cp)
�∇ψp − ∇ε∗

p

}
× ( f + gUp + kUe) (18)

δHe = −
{
(Ŵce − W ∗

ce)
�∇ψe + ∇ε∗

e

}
× ( f + gUp + kUe) (19)

To achieve the FT stability and convergence of the
critic NN (15) and the actor NN (17), and inspired by
[47,48] a squared loss function is defined with a his-
torical stack of the state and residual error:

Ei = {
sigα(�Hi )

}� sigα(�Hi )

+ 1

M

M∑
k=1

{
sigα(�k

Hi
)
}�

sigα(�k
Hi

), i = p, e

(20)

where �k
Hi

is the integral of the k-th historical resid-
ual error (16) of the i-th player. Compared with regular
concurrent learning laws [31,49], a finite-time concur-
rent learning law is employed to ensure finite-time con-
vergence of the critic NN:

˙̂Wci = − ki,c1
ψi sigα(�Hi )

(ψ�
i ψi + 1)2

− ki,c2
M

M∑
k=1

ψk
i sig

α(�k
Hi

)

(ψk �
i ψk

i + 1)2
, i = p, e (21)

where ki,c1, ki,c2 are positive learning rates, α ∈ (0, 1)
enables finite-time convergence, and {ψk

i ,�k
Hi

}Mk=1
contains historical data for concurrent learning. To
ensure the convergence of the critic NN weights Ŵci ,
the persistent excitation condition (PE) is assumed in
Assumption 3.1. To acquire the actor NN weights Ŵai

of the FT optimal controller, the transformation (11) is
employed to map the value function to the FT conver-
gence space. The weights of the actor NN are estimated
using:

Ŵai =
{∫

	n

∇φi∇φ�
i dx

}† {∫
	n

∇φi sig
2
α

(
∇V̂i

)
dx

}
(22)

where i = p, e, † denotes the Moore–Penrose pseudo-
inverse, and

∫
	n

· dx represents the Lebesgue integral
[37].

Remark 1 [Lebesgue Integral in Finite-Time Value
Function]

The Lebesgue integral is utilized for two essen-
tial purposes in our framework: (1) It enables rigor-
ous transformation of the asymptotic value function
Vi (x) into finite-time stable space, ensuring measure-
theoretic completeness critical for establishing finite-
time convergence properties. (2) It provides the mathe-
matical foundation for mapping the value function into
the finite-time convergence space, which is necessary
for accurate estimation of actor NNweights Ŵai within
well-defined finite-time stable regions. This choice of
integral formulation ismade formaintaining theoretical
guarantees while enabling practical implementation.

By substituting the actor NN weights (22) into the
optimal controller (13), we obtain:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Û ∗

p (x) = − μp tanh

(
R−1
p g�

2μp
sig

α
2 (∇φ�

p Ŵap)

)

Û ∗
e (x) =μe tanh

(
R−1
e k�

2μe
sig

α
2 (∇φ�

e Ŵae)

)
(23)

For the actor NNs, to maintain bounded weights
during updates while ensuring finite-time convergence,
and inspired by literatures [28,44], a finite-time gradi-
ent projection law is employed:

˙̂Wai = Proj
{
−kai Fi sig

α
(
Ŵai − Ŵci

)}
, i = p, e

(24)

where kai > 0 are learning rates, Fi ∈ R
nϕi ×nϕi are

positive definite matrices, and Proj(·) is a projection
operator ensuring the weights remain within specified
bounds [28].

Remark 2 [Finite-Time Update of Actor and Critic
Networks in FT-RL-PEG]

The proposed FT-RL-PEG scheme builds upon
adaptive dynamic programming and reinforcement
learning (ADP&RL) frameworks [47,48], while mak-
ing several key improvements. Unlike traditional ADP
methods that only guarantee asymptotic convergence
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Fig. 1 Structure of the FT-RL-PEG scheme and its corresponding docking control process

[31,49], our finite-time concurrent learning approach in
(21) maintains data efficiency while providing guaran-
teed convergence times through the sigα(·) terms. Fur-
thermore, the projection operator in (24) ensures actor
weights remain bounded during updates while main-
taining finite-time convergence properties, addressing
stability issues in traditional ADP implementations
[28,44]. These improvements enable reliable real-time
implementation while maintaining theoretical guaran-
tees on convergence and stability.

After completing the online learning process of the
FT-RL-PEG scheme, the overall structure is illustrated
in Fig. 1, where the right side depicts the docking con-
trol process of the UAV–UGV system, and the left side
shows the FT-RL-PEG scheme, which consists of four
main components:

1. The pursuit-evasion game (PEG) dynamics (2), rep-
resented by the grey dashed box, which models the
interaction between the UAV and UGV.

2. The finite-time actor-critic neural network for the
pursuit player (FT-AC-NN-P), shown in the yellow
box, which learns optimal pursuit strategies with
finite-time convergence guarantees.

3. The finite-time actor-critic neural network for the
evasion player (FT-AC-NN-E), depicted in the pur-
ple box, which learns optimal evasion policies
within finite time.

4. The finite-time concurrent learning update laws (21)
and (24), highlighted in the red box, which ensure
finite-time adaptation of both neural networks.

The following assumptions are made to ensure the
convergence of the FT-RL-PEG algorithm.

Assumption 3.1 [Persistent Excitation Condition [37,
50]] The historical data collected online for weight
updates satisfies the following conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫ t+T
t

ψi (τ )ψi (τ )�(
ψ�
i ψi+1

)2 dτ ≥ ϑ1i IL ,

1
M

∑M
k=1

∫ t+T
t

ψk
i (τ )ψk

i (τ )�(
ψk �
i ψk+1

i

)2 dτ ≥ ϑ2i IL ,

∫ t+T
t ψ

†
i (τ ) sigα (ψi (τ ))� dτ ≥ ϑ3i IL ,

1
M

∑M
k=1

∫ t+T
t ψk

i (τ )† sigα
(
ψk
i (τ )

)�
dτ ≥ ϑ4i IL ,

where i ∈ {1, . . . , N }, and at least one constant ϑi

(i = 1, 2, 3, 4) is strictly positive.

Assumption 3.2 (Boundedness of NN Weights and
Basis Functions) For all system states x ∈ 	n , there
exist positive constants WH , ψH , φH , ψDH , φDH , εH
and εDH such that:

1. The neural network weights are bounded:

‖Ŵci‖ ≤ WH , ‖Ŵai‖ ≤ WH

2. The basis functions and their gradients satisfy:

‖ψi (x)‖ ≤ ψH , ‖φi (x)‖ ≤ φH

‖∇ψi (x)‖ ≤ ψDH , ‖∇φi (x)‖ ≤ φDH

3. The approximation errors are bounded:

‖εi (x)‖ ≤ εH , ‖∇εi (x)‖ ≤ εDH

The detailed implementation procedure of the FT-RL-
PEG framework is presented in Algorithm 1. This
algorithm describes the initialization, parameter set-
tings, and iterative learning process to achieve optimal
pursuit-evasion strategies.
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Algorithm 1 FT-RL-PEG Algorithm for UAV–UGV
Docking Control
1: Initialize:

– Actor-Critic NN weights: {Ŵci , Ŵai }i=p,e randomly
with small values

– Historical data buffers: Empty state and control trajecto-
ries

– System states: Initial positions {xe(0), xp(0)}
2: Parameters:

– Learning rates: ki,c1, ki,c2, kai for NN updates
– Weight matrices: Fi , Ri , Qi for control design
– Control bounds: μi for input saturation
– Thresholds: Tend for convergence, ε for error

3: while ‖xp − xe‖ > Tend and t < Tmax do
4: // State measurement and processing
5: Measure current states: {xe(t), xp(t)}
6: Calculate tracking error: x(t) = xp(t) − xe(t)
7: Process obstacle information: xo(t) if present
8: // Optimal control computation
9: Update basis functions: {φi (x), ψi (x)}i=p,e from (32)
10: Calculate pursuit control: û p(t) from (23)
11: Calculate evasion control: ûe(t) from (23)
12: // Learning error calculation
13: Compute current Hamiltonian residuals:

– Pursuit error: δp(t) from (19)
– Evasion error: δe(t) from (18)

14: Update historical data: {δki (t), ψk
i (t)}Mk=1

15: // Neural network adaptation
16: Update critic weights via (21):

– ˙̂Wci = −ki,c1
ψi sigα(�H i )

(ψ�
i ψi+1)2

− ki,c2
M

∑M
k=1

ψk
i sigα(�k

H i
)

(ψk
i

�ψk
i +1)2

17: Update actor weights via (24):

– ˙̂Wai = Proj{−kai Fi sigα(Ŵai − Ŵci )}
18: Apply controls: {û p(t), ûe(t)} to vehicles
19: Update system states and time: t = t + �t
20: end while
21: return Optimal control policies {û∗

p, û
∗
e }

Remark 3 (Extension to Multi-Agent Scenarios)
For multi-agent implementations, the FT-RL-PEG

framework adopts a hierarchical structure where the
main pursuit-evasion game decomposes into intercon-
nected sub-games. This extension requires several key
components: (1) a hierarchical control architecture
combining localized decision-making with system-
wide optimization, (2) adaptive coalition strategies
enabling coordinated pursuit behaviors, (3) enhanced
Nash equilibrium formulations suitable for multiple
interacting agents, (4) robust communication protocols
supporting distributed implementation, and (5) com-
prehensive collision avoidance mechanisms for safe

multi-vehicle operation. Compared with traditional
leader-follower paradigms that rely on fixed hierar-
chical structures [51,52], our game-theoretic approach
enables dynamic competitive interactions between pur-
suers and evaders. This leads to emergent equilibrium
behaviors that better reflect real-world pursuit-evasion
scenarios. The framework maintains theoretical con-
vergence guarantees while addressing practical chal-
lenges in multi-agent coordination and stability.

Remark 4 (Comparison with DRL Methods) While
deep reinforcement learning (DRL) methods like PPO,
SAC and DroQ have shown impressive performance
in various control tasks, our approach, as a deriva-
tion of classical adaptive control method—Adaptive
Dynamic Programming and Reinforcement Learning
(ADP&RL) [47,48], differs fundamentally in its theo-
retical foundations and guarantees. Unlike traditional
ADP&RL methods that provide only asymptotic con-
vergence and handle constraints through reward shap-
ing, our approach achieves provable finite-time con-
vergence through Lyapunov functions and incorpo-
rates game-theoretic Nash equilibrium concepts. This
theoretically grounded method enables both rapid
learning and rigorous equilibrium guarantees while
maintaining interpretability throughLyapunov analysis
rather than relying on black-box deep neural networks,
making it particularly suitable for safety-critical and
performance-demanded UAV–UGV docking applica-
tions.

3.2 Finite-time stability analysis

In this subsection, we present the finite-time (FT) sta-
bility analysis for the system states and neural network
parameters.We begin by analyzing the FT convergence
properties of the optimal controller (13) with the fol-
lowing lemma.

Lemma 3.3 (Finite-Time Stability of Optimal Con-
troller [40]) Consider the nonlinear system (2) under
the optimal control input (13). The system states x(t)
converge to the equilibrium point in finite time.

Define the Lyapunov candidate function:

LVi = 2
∣∣∇�∗

i

∣∣ α
2 +1

α + 2
(25)
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The time derivative of LVi satisfies:

L̇Vi ≤ −nλGi
λKi

4

∣∣∇�∗
i

∣∣α
≤ −nλGi

λKi

4

(
1 + α

2

) 2α
α+2

L
2α

α+2
Vi

(26)

where λKi
= min1≤ j≤n

{∣∣∣∇2
x j �

∗
i (x j )

∣∣∣}, and λGi

denotes the minimal eigenvalue of gi R
−1
i i g�

i .
Thus, the system converges to the equilibriumwithin

the finite settling time:

TUi [x(0)] = (α + 2)
{
LVi [x(0)]

} 2−α
α+2

cUi (2 − α)
(27)

where cUi =
(
nλGi

λKi

4

)(
1 + α

2

) 2α

α + 2 .

Lemma 3.4 (Practical Finite-Time Stability [37,45,
46]) Consider the system (2) with control input (13).
Let V be a positive definite function on 	n \ {x0} with
V (0) = 0. If, for all x ∈ 	n \ {x0}, the following
inequality holds:

V̇ ≤ −γV α + δ� (28)

where γ > 0, α ∈ (0, 1), and δ� ∈ (0,∞), then there
exists a constant � ∈ (0, 1) such that:

1. The system states converge to a region bounded by

V ≤
(

δ�

(1 − �)γ

)1/α

(29)

2. The convergence time is bounded by

T�[x(0)] = V (0)1−α

γ�(1 − α)
(30)

To analyze the stability properties of the proposed
framework, we present the following key theoretical
results concerning the finite-time convergence of the
neural network weights and system states.

Theorem 3.5 (Finite-TimeConvergenceofNeuralNet-
works and System States) Under Assumptions 3.1 and
3.2, for the system (2) with the learning algorithm
defined by Eqs. (21), (24), and (20), the following
results hold:

1. The critic neural network weights Ŵci converge to
their optimal values W ∗

ci in finite time.
2. The transformed value functions Vi , as defined in

(11), achieve finite-time convergence.

3. The Stackelberg equilibrium is attained in finite
time.

Proof See Appendix 1. �
The next theorem establishes finite-time conver-

gence guarantees for the actor networks and closed-
loop system.

Theorem 3.6 [Finite-Time Stability of ActorNetworks
and System States] For system (2) under the proposed
FT-RL-PEG learning framework, the following conver-
gence properties hold:

1. The approximate pursuit policy û p from (23) con-
verge to optimal policies u∗

p in finite time
2. The approximate evasion policy ûe from (23) con-

verge to optimal policies u∗
e in finite time

3. The closed-loop system states x achieve finite-time
stability under the approximate optimal control

Proof The detailed proof is provided in Appendix 1. �

4 Numerical simulations

In this section, two numerical simulation examples are
conducted to verify the effectiveness of the proposed
FT-RL-PEG scheme. The first example is performed
using a representative nonlinear pursuit-evasion game
scenario. The second example is conducted in the sce-
nario of a pursuit aerial vehicle docking with a evasion
ground vehicle.

4.1 Example 1: Nonlinear pursuit-evasion system

4.1.1 Simulation setup

In this example, a representative nonlinear pursuit-
evasion system is designed to demonstrate docking
control in 2D space. The dynamic models of both the
pursuer and evader in system (1) are selected as non-
linear affine systems with parameters from [12,28]:

fi (xi ) =
[ −xi,1 + xi,2

− 1
2 xi,1 − 1

2 xi,2
(
1 − (

cos
(
2xi,1

) + 2
)2)

]
,

gi (xi ) =
[
sin

(
2xi,1

) + 2 0
0 cos

(
2xi,1

) + 2

]
, i = p, e.
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Table 1 Parameters of the FT-RL-PEG scheme

Example Initial conditions Controller parameters Learning parameters Weights update

Example 1: xe(0) = [2, 3]T Re = I2, Qe = I3 Ŵce = rand(3, 1) + 0.1 ke,c1 = 0.5, ke,c2 = 0.1

Nonlinear μe = 0.5, α = 0.8 Ŵae = rand(3, 1) + 0.1 ke,a = 1, Fe = I3

Pursuit-Evasion xp(0) = [2.5, 2.5]T Rp = I2, Qp = 20I2 Ŵce = rand(3, 1) + 0.5 kp,c1 = 0.5, kp,c2 = 0.1

System μp = 0.5, α = 0.8 Ŵae = rand(3, 1) + 0.5 kp,a = 1, Fp = I6

Example 2: xe(0) = [2, 3]T Re = 100I2, Qe = I2 Ŵce = rand(3, 1) + 0.1 ke,c1 = 0.5, ke,c2 = 0.1

UAV–UGV μe = 0.75, α = 0.8 Ŵae = rand(3, 1) + 0.1 ke,a = 1, Fe = I3

Docking xp(0) = [3, 2, 1]T Rp = 50I3, Qp = 20I3 Ŵce = rand(7, 1) + 0.5 kp,c1 = 0.5, kp,c2 = 0.1

System μp = 1, α = 0.8 Ŵae = rand(7, 1) + 0.5 kp,a = 1, Fp = I6

Fig. 2 Example 1: a Revolution of rewards and NNs weights. b Position of pursuiter-evasioner. c Control inputs to pursuiter-evasioner

Fig. 3 Example 2: a Revolution of rewards and NNs weights. b Position of pursuiter-evasioner. c Control inputs to pursuiter-evasioner

For implementing the FT-RL-PEG scheme, actor-
critic neural networks are employed with the following
specifications:

• NetworkArchitecture: Both pursuer and evader use
3-dimensional networks (nϕe = nϕp = 3)

• Initial Weights: Randomly initialized with small
offsets

• Evader: Ŵe,c = Ŵe,a = rand(3, 1) + 0.5
• Pursuer: Ŵp,c = Ŵp,a = rand(3, 1) + 0.5

• Basis Functions: Fractional power form

ϕi = 1

α + 1

[
xα+1
1 , xα+1

2 , xα+1
3

]�
(31)

where xi denotes the i-th state component
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Fig. 4 Example 1: Trajectory of the pursuit-evasion in 2D space

Fig. 5 Example 2: Trajectory of the pursuit-evasion in 2D space

Theneural networkweights are updatedonline using
the concurrent learning law (21) and gradient projec-
tion law (24). Detailed control parameters are pro-
vided in Table 1. The numerical simulations are imple-
mented in MATLAB R2023b Simulink with the fol-
lowing specifications:

• Hardware: Intel Core i3-12100F (3.3GHz), 24GB
RAM

• Solver: Fourth-order Runge–Kutta method
• Time Step: 0.001s fixed
• Simulation Duration: 10 s

Fig. 6 Example 2: Trajectory of the pursuit-evasion in 3D space

4.1.2 Simulation result

The results of Example 1 are presented in Figs. 2 and
4. The performance analysis is shown in Fig. 2:

• Figure2a demonstrates the convergence of rewards
and actor-critic neural network weights, validating
finite-time learning convergence

• Figure2b displays the position states of both vehi-
cles, showing effective tracking performance with
bounded tracking errors

• Figure2c illustrates that all control inputs remain
within their prescribed saturation bounds while
achieving optimal pursuit-evasion strategies

The trajectory visualization in Fig. 3 and 4 shows
the pursuit-evasion paths in 2D space. The results vali-
date that the proposed FT-RL-PEG framework success-
fully achieves optimal docking control with guaranteed
finite-time convergence.

4.2 Example 2: UAV–UGV docking system

In this example, we design a pursuit-evasion system
to accomplish an aerial-ground vehicle docking task.
The UGV (evader) operates in the X-Y plane while the
UAV (pursuer) maneuvers in X-Y-Z 3D space.
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4.2.1 Simulation setup

The dynamic models for both vehicles are given by:

fe =
[−0.1xe,1 + 0.05xe,2

−0.05xe,1 − 0.1xe,2

]
,

ge = I2×2, xe ∈ R
2, ue ∈ R

2

f p =
⎡
⎣−0.1xp,1 + 0.05xp,2

−0.05xp,1 − 0.1xp,2
−0.1xp,3

⎤
⎦ ,

gp = I3×3, xp ∈ R
3, u p ∈ R

3

which represents a damped kinematic model that
accounts for air resistance and ground friction effects.
This model extends standard position-velocity kine-
matics [12,28] by incorporating realistic damping
terms.

Remark 5 (Model Selection Rationale)
The simplified UAV and UGV models balance

tractability with practical relevance. For the UGV in
2D space, the damped kinematic model fe includes
friction terms, while the input matrix ge = I2×2

enables planar motion control. For the UAV in 3D
space, the model f p adds aerial damping, with input
matrix gp = I3×3 enabling spatial control. These mod-
els incorporate key dynamics while enabling efficient
controller design. Additionally, the models for sim-
ulation example 2 were carefully chosen to validate
the algorithm’s performance before hardware imple-
mentation, while maintaining practical relevance. The
experimental results in the later section confirm that
this simplified yet representative modeling approach
achieves reliable real-world performance, striking an
effective balance between theoretical analysis andprac-
tical implementation.

The evader UGV aims to navigate efficiently while
the pursuer UAV must track and ultimately dock with
the UGV. For the evader UGV, we employ finite-time
neural networks identical to Example 1. For the pur-
suer UAV, we design enhanced neural network basis
functions:

ϕi = 1

α + 1

[
xα+1
1 , xα+1

2 , xα+1
3 , (x1x2)

α+1, (x1x3)
α+1,

(x2x3)
α+1, (x1x2x3)

α+1
]�

(32)

Table 2 Hardware platform specifications

Component Specifications

UGV (Evader) 4-wheel drive, RK3566 CPU

4GB RAM, PX4 Autopilot

UAV (Pursuer) X150 quadcopter, RK3566 CPU

4GB RAM, PX4 Autopilot

Motion capture OptiTrack system with 8 cameras

120 Hz sampling frequency

Control computer Intel i7-12700 (3.60 GHz)

32GB RAM, 30 Hz control rate

Graphics station Intel i7-8650u (1.90 GHz)

16GB RAM, Intel UHD 620

Fig. 7 Sketch of the setup for the hardware experiments

Fig. 8 Detailed hardware platform for the experiments

where xi represents the i-th element of the state vec-
tor x . This expanded basis set captures both polyno-
mial and trigonometric state interactions necessary for
precise 3D tracking control. The inclusion of sinu-
soidal terms improves the network’s ability to approx-
imate periodic motion patterns typical in aerial vehicle
maneuvers.
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Table 3 Experiment parameters for hardware platform

Parameter Notation Value

Control frequency f 30 Hz

Fixed time step �t 1/30 s

Gravitational acceleration g 9.8 m/s2

Vehicle mass me 15.0 kg

Quadcopter mass mp 310 g

Vehicle input saturation μe 0.75 m/s

Quadcopter input saturation μp 1.0 m/s

4.2.2 Simulation result

The results of example 2 are presented in Fig. 3 and
Figs. 5 and 6. The performance analysis is shown in
Fig. 3:

• Figure3a demonstrates the convergence of rewards
and actor-critic neural network weights, validating
finite-time learning convergence

• Figure3b displays the position states of both vehi-
cles, showing effective tracking performance with
bounded tracking errors

• Figure3c illustrates that all control inputs remain
within their prescribed saturation bounds while
achieving optimal pursuit-evasion strategies

In Fig. 3a, the baseline adaptive dynamic program-
ming (ADP) method derived from [31,48] is included
for comparison, It shows that the ADPmethod exhibits
slower convergence compared to the proposed FT-RL-
PEG scheme, in which the FT-RL-PEG scheme con-
verges to the optimal solutionwithin 8 s, while theADP
method does not converge to a similar range within the
simulation duration of 25s. The 2D and 3D trajectories
of the pursuit-evasion system are shown in Figs. 5 and
6, respectively. The results validate that the proposed
FT-RL-PEG framework successfully accomplishes the
aerial-ground vehicle docking task, with the pursuer
UAV effectively tracking and landing on the evader
UGV.

These results confirm that the FT-RL-PEG frame-
work successfully coordinates the UAV–UGV system
to achieve optimal pursuit-evasion performance with
guaranteed finite-time convergence properties.

5 Hardware experiments

In this section, hardware experiments are conducted to
validate the effectiveness of the proposed FT-RL-PEG
scheme.

5.1 Experiment setup

The experimental setup consists of a hardware plat-
form for validating the FT-RL-PEG framework and
a motion capture system for state measurement. The
detailed hardware specifications are provided in Table
2, Figs. 7 and 8. The experiment scenarios are designed
to validate:

• The evaderUGV’s ability to evade the pursuerUAV.
• The pursuer UAV’s capability to accurately track
and land on the moving UGV

• Real-time performance of the FT-RL-PEG algo-
rithm on physical hardware

Three experimental cases are conducted:

1. Case 1: Basic pursuit-evasion scenario to validate
convergence and stability

2. Case 2: Complex pursuit-evasion scenario with
large initial offsets.

3. Case 3: Unsafe pursuit-evasion scenario with com-
plex maneuvers and obstacle avoidance

For the third case, the pursuer UAV must navigate
around a stationary obstacle while tracking and landing
on the moving UGV. The reward function is modified
to penalize collisions and reward obstacle avoidance in
the following form:

r = −
(
x�ωx

)α − �p(Up) + �e(Ue) + B(x) (33)

whereB(x) is a continuous function that penalizes col-
lisions with the obstacle, which is modeled as a sphere
with a fixed radius and position in the 3D space from
literature [28]. The detailed experimental parameters
are provided in Table 3.

5.2 Experiment results

Case 1—Standard 2D pursuit-evasion:
The experimental results validate the effectiveness

of the FT-RL-PEG framework. Key findings include:
First, Fig. 9a demonstrates rapid convergence of neural
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Fig. 9 Case 1: a Evolution of actor-critic neural network weights. b Position states of both vehicles. c Control inputs for pursuit-evasion

Fig. 10 2D and 3D trajectories for three experimental cases demonstrating the FT-RL-PEG framework

network weights, with both pursuer and evader net-
works reaching steady state by t = 30 s. The neg-
ligible variations in critic parameters Ŵci thereafter
confirm successful finite-time learning convergence,
even with modeling uncertainties. Second, Fig. 9b
shows the position trajectories converging to the cen-
ter point with minimal tracking errors, validating that
the optimal pursuit-evasion strategy effectively guides

both vehicles to the desired docking location. Third,
Fig. 9c verifies that all control inputs remain within
their saturation boundsμi from (5), ensuring safe oper-
ation throughout. Finally, Fig. 10a and d confirm the
framework’s capability in handling complex maneu-
vers. These results validate the finite-time convergence
and effectiveness of the FT-RL-PEG scheme under
standard conditions .
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Fig. 11 Experiment: snapshots of the pursuit-evasion system of UAV–UGV docking process of case 3

Case 2& 3—Large initial offsets& bstacle avoid-
ance:

Todemonstrate theFT-RL-PEGframework’s robust-
ness in handling complex docking scenarios, case 2 &
3 are conducted, in which case 2 is set up with larger
initial position offsets (up to 2 metrics) to test robust-
ness to spatial deviations, while case 3 introduces a
spherical obstacle that both vehicles must avoid dur-
ing the docking maneuver. Figure10a–c show the 2D
trajectories for:

• Standard tracking scenario validating baseline per-
formance with minimal tracking errors

• Testing with large initial offsets (2x baseline)
demonstrates robust convergence despite signifi-
cant spatial deviations

• Obstacle avoidance case demonstrating safe navi-
gation while avoiding a spherical obstacle during
pursuit and docking

The 3D trajectories in Fig. 10d–f confirm similar per-
formance in complex spatial environments. Figure11
captures key snapshots of the docking process for case
3, highlighting the precise coordination between vehi-
cles during landing. These results validate that the
FT-RL-PEG scheme effectively enables autonomous
aerial-ground docking while maintaining safety con-
straints.

6 Conclusion

This paper has developed a finite-time reinforce-
ment learningwith pursuit-evasiongame (FT-RL-PEG)

approach for unmanned aerial-ground vehicle docking
control. The FT-RL-PEG framework combines finite-
time learning with pursuit-evasion games to optimize
docking performance. A novel actor-critic neural net-
work architecturewas designed for approximating opti-
mal policies, utilizing finite-time concurrent learning
laws for online weight adaptation. Rigorous stability
analysis established theoretical guarantees on finite-
time convergence properties. Comprehensive experi-
mental validation demonstrated the framework’s effec-
tiveness in coordinating aerial-ground vehicle systems.
Results confirm that FT-RL-PEG enables optimal path
planning and tracking while maintaining safe docking
capabilities.

Key limitations of the current approach encompass:

1. PlatformScalability:Framework currently addresses
single pursuer-evader pairs rather thanmulti-vehicle
scenarios.

2. Disturbance Handling: Performance sensitivity to
environmental factors including wind effects and
sensor uncertainties.

3. ResourceEfficiency:Computational overhead requir-
ing further optimization for resource-constrained
systems.

4. System Modeling: Reliance on simplified vehicle
dynamics and static obstacle representations.

5. State Estimation: Dependence on high-quality
state measurements for control implementation.
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Important directions for future research include exten-
sion to multi-vehicle scenarios and enhanced robust-
ness.
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Appendix: Proof of Theorem 3.5

Proof To analyze the finite-time convergence and sta-
bility properties, we introduce a composite Lyapunov
candidate function incorporating both critic network
weight estimation errors and value function approxi-
mation errors:

V i (t, x, {V̂i }Ni=1, {Ŵci }Ni=1)

= 1

α + 1

N∑
i=1

(
|V̂i − V ∗

i |α+1 + |Ŵci − W ∗
ci |α+1

)

=
N∑
i=1

(
V i
1 + V i

2

)
=

N∑
i=1

V i (34)

whereα ∈ (0, 1) is the fractional power enabling finite-
time convergence, and:

– Value function error: V i
1 = |V̂i−V ∗

i |α+1

α+1

– Weight estimation error: V i
2 = |Ŵci−W ∗

ci |α+1

α+1

Here V̂i and V ∗
i denote the approximate and opti-

mal value functions, while Ŵci and W ∗
ci represent the

estimated and optimal critic network weights.
Taking the time derivative of (34) along the concur-

rent learning law (21):

V̇ =
N∑
i=1

{
sigα(V̂i − V ∗

i )� ˙̂
Vi + sigα(Ŵci − W∗

ci )
� ˙̂Wci

}

=
N∑
i=1

{
sigα(V ∗

i − V̂i )
�ψ�

i + sigα(W∗
ci − Ŵci )

�}

×
{α1ψi sig

α(�Hi
)

(ψ�
i ψi + 1)2

+ α2

M

M∑
k=1

ψk
i sigα(�k

Hi
)

(ψk �
i ψk

i + 1)2

}
(35)

TheHamiltonian approximation error over [t, t+T ]
is:

�Hi
=
∫ t+T

t
Ĥi

(∇�i ,Up,Ue, x
)
dτ

=
∫ t+T

t

{
Ŵ�
ci ∇ψi

(
f + gÛp + kÛe

)
+ |x |αω + �i − �k

}
dτ

−
∫ t+T

t

{ (
W∗�
ci ∇ψi + ∇ε∗

i

) (
f + gUp + kUe

)
+ |x |αω + �i − �k

}
dτ

=
∫ t+T

t

(
Ŵci − W∗

ci

)� ∇ψi
(
f + gû + gω

)
dτ

−
∫ t+T

t
∇ε∗

i dτ = V̂i − V ∗
i (36)

Using the integral form of the Hamiltonian function
(36) and Assumption 3.1, we can analyze the first term

sigα(V̂i−V ∗
i )� ˙̂

Vi in (35). Its integral over time interval
[t, t + T ] can be derived as:

∫ t+T

t
sigα

(
V̂i − V ∗

i

)� ˙̂
Vidτ

= −
∫ t+T

t
sigα

(
V̂i − V ∗

i

)�
ψ�
i

⎧⎪⎨
⎪⎩

α1ψi sig
α(�Hi

)(
ψ�
i ψi + 1

)2

+α2

M

M∑
k=1

ψk
i sigα(�k

Hi
)(

ψk �
i ψk

i + 1
)2

⎫⎪⎬
⎪⎭ dτ

≤ − (ϑ1i + ϑ2i ) sig
α
(
V̂i − V ∗

i

)�
IL sigα

(
V̂i − V ∗

i

)
≤ − ϑ5i

∣∣∣V̂i − V ∗
i

∣∣∣2α (37)

where ϑ5i = α1ϑ1i + α2ϑ2i represents the composite
learning rate. Therefore, the first term in (35) satisfies:

sigα(V̂i −V ∗
i )� ˙̂

Vi ≤ −ϑ4i |V̂i −V ∗
i |2α , establishing a

negative definite upper bound.
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Similarly, for the second term sigα(Ŵci−W ∗
ci )

� ˙̂Wci ,
we perform the following analysis. Integrating over
[t, t + T ] yields:
∫ t+T

t
sigα

(
Ŵci − W ∗

ci

)� ˙̂Wcidτ

= −
∫ t+T

t
sigα

(
Ŵci − W ∗

ci

)�
{

α1ψi sigα(�Hi )(
ψ�
i ψi + 1

)2
+ α2

M

M∑
k=1

ψk
i sig

α(�k
Hi

)(
ψk �
i ψk

i + 1
)2
}
dτ (38)

Applying Assumption 3.1 and the Cauchy-Schwarz
inequality, we can bound this integral:

(38) ≤ − sigα
(
Ŵci − W∗

ci

)�
{

α1

∫ t+T

t
ψ
†
i sigα (ψi )

� dτ

+ α2

M

M∑
k=1

∫ t+T

t
ψ
k†
i sigα

(
ψk
i

)�
dτ

⎫⎬
⎭ sigα

(
Ŵci − W∗

ci

)

≤ −ϑ6i

∣∣∣Ŵci − W∗
ci

∣∣∣2α (39)

where ϑ6i = α1ϑ3i + α2ϑ4i represents the composite
learning rate for the critic weights. Combining (37) and
(39), we obtain an upper bound for the integral of the
Lyapunov function derivative (35):

∫ t+T

t
V̇ idτ ≤ −

{
ϑ4i

∣∣∣V̂i − V ∗
i

∣∣∣2α + ϑ6i

∣∣∣Ŵci − W∗
ci

∣∣∣2α}
(40)

This inequality establishes negative definiteness of
the Lyapunov derivative integral, ensuring convergence
of both the value function and critic weights. Based on
inequality (40) and Lyapunov function (34), we can
derive:

V̇ i ≤ −ϑV i (V
i )

2α
α+1 (41)

where the composite convergence rate ϑV i is defined
as:

ϑV i = min
{
ϑ4i (1 + α)

2α
α+1 /T,

ϑ6i (1 + α)
2α

α+1 /T
}

(42)

The above inequality is obtained through the follow-
ing steps:

1. Normalizing the learning rates by the time interval
T:

• ϑ
′
4i = ϑ4i/T for value function

• ϑ
′
6i = ϑ6i/T for weights

2. Applying Jensen’s inequality to each term:

∣∣∣V̂i − V ∗
i

∣∣∣2α ≥ (1 + α)
2α

α+1 (V i
1 )

2α
α+1∣∣∣Ŵci − W ∗

ci

∣∣∣2α ≥ (1 + α)
2α

α+1 (V i
2 )

2α
α+1

3. Combining terms using the minimum convergence
rate

Therefore, according to Lemma 3.4, there exists a finite
settling time TŴci

(V i ) such that:

(1) The weights Ŵci of the critic NN converge to opti-
mal values W ∗

ci within finite time:

‖Ŵci (t) − W ∗
ci‖ ≤ ε, ∀t ≥ TŴci

(V i ) (43)

for any small ε > 0.
(2) The value function approximation error is bounded

by:

|V i (t)| ≤ δi , ∀t ≥ TŴci
(V i ) (44)

for any arbitrary δi > 0.

The finite convergence time is explicitly given by:

TŴci
(V i ) = (α + 1){V i (x, x0)} 1−2α

1+α

ϑV i (1 − α)
(45)

Based on the above analysis, we can conclude:

(1) The critic neural networks achieve finite-time con-
vergence to optimal weights within time TŴci

(V i ).
(2) The approximated value functions converge to opti-

mal values within finite time with bounded error.
(3) The Nash equilibrium of the pursuit-evasion game

is achieved within finite time:

T
V̂

(V ) = max
i=1,...,N

{TŴci
(V i )} (46)

This completes the proof of finite-time convergence
for both the neural networks and Nash equilibrium. �

Appendix: Proof of Theorem 3.6

Proof First we establish a relationship between the
optimal actor weights W ∗

ai and optimal critic weights
W ∗

ci through Eq. (22):
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W∗
ai =

{∫
	n

∇φi∇φ�
i dx

}† {∫
	n

∇φi sig
2
α

(
∇ψ�

i W∗
ci

)
dx

}
(47)

Let λφi
and λ̄φi denote the minimum and maximum

eigenvalues of
∫
	n

∇φi∇φ�
i dx respectively. To ana-

lyze convergence, consider the difference between esti-
mated actorweights Ŵai from (22) and optimalweights
W ∗

ai :

‖Ŵai − W∗
ai‖22

=
∥∥∥{∫

	n

∇φi∇φ�
i dx

}†
×
∫
	n

∇φi

{
sig

2
α

(
∇ψ�

i Ŵci

)
− sig

2
α

(
∇ψ�

i W∗
ci

)}
dx
∥∥∥2
2

(48)

By applying Cauchy-Schwarz inequality and proper-
ties of matrix norms:

‖Ŵai − W ∗
ai‖22 ≤ 1

λ2φi

∥∥∥ ∫
	n

∇φi

{
sig

2
α

(
∇ψ�

i Ŵci

)

− sig
2
α

(
∇ψ�

i W ∗
ci

) }
dx
∥∥∥2
2

≤ λ̄φi

λ2φi

∫
	n

∥∥∥ sig 2
α

(
∇ψ�

i Ŵci

)

− sig
2
α

(
∇ψ�

i W ∗
ci

) ∥∥∥2
2
dx

≤ λ̄φi λ̄
2
ψi

λ2φi

‖Ŵci − W ∗
ci‖

4
α

2 (49)

where λ̄ψi denotes the maximum eigenvalue of∫
	n

∇ψi∇ψ�
i dx .

From Theorem 3.5, we know that the critic NN
weights Ŵci converge to the optimal weights W ∗

ci in
finite time, satisfying:

‖Ŵci − W ∗
ci‖1+α

2 ≤ (1 + α)δi , ∀δi > 0 (50)

for all t > TŴci

(
V i (x, 0)

)
, where TŴci

(
V i (x, 0)

)
is

the convergence time given by (45).
Substituting (50) into (49) yields:

‖Ŵai − W ∗
ai‖22 ≤ λ̄φi λ̄

2
ψi

λ2φi

{(1 + α)δi }
4

(1+α)α , ∀δi > 0

(51)

This inequality establishes that the actorNNweights
Ŵai converge to the optimal weights W ∗

ai in finite

time as well. Then we analyze the convergence of the
approximate optimal control input Û . According to
Lemma 3.3, the actor weights Ŵai converge to optimal
weights W ∗

ai with settling time:

Tui [x(0)] = (α + 2)
{
LVi [x(0)]

} 2−α
α+2

cLi (2 − α)
(52)

where the Lyapunov function is:

LVi (x, x0) = 2

α + 2

∣∣∣∇φ�
i Ŵai (0)

∣∣∣ α
2 +1

(53)

Therefore, combining Theorem 3.5 with the above
analysis, we can conclude:

(1) The approximate optimal control Ûi converges to
optimal controls U ∗

i within finite time:

T
Ûi

= max{Tui [x(0)], TŴci
(V i (x, 0))} (54)

(2) The actor NN weights Ŵai achieve finite-time con-
vergence to optimal weights W ∗

ai with explicit set-
tling time bounds. Next, we analyze the finite-time
convergence of the system states x . With the actor-
critic NNs approximating the optimal weights, the
optimal control U ∗

i can be expressed as:

U ∗
i = −μi tanh(

1

2μi
R−1
i g�

i ∇ψ�
i W ∗

ci ) (55)

The control error between optimal and approximate
control inputs satisfies:

‖U ∗
i − Ûi‖2 ≤ �i‖W̃ci‖2 + �Ui (56)

where�i is bounded by the neural network approxima-
tion parametersϕH ,ϕDH ,σH andσDH ,�Ui represents
the approximation error bound, and W̃ci = Ŵci − W ∗

ci
denotes the weight estimation error.

For the closed-loop system stability analysis, we
derive the time derivative of the Lyapunov functionLV

from (26):

˙LVi = sig
α
2
(∇�∗

i

)� ∇2�∗
i

{
f + gû + gω∗ +

N∑
i=1

gi
(
Û i − U ∗

i

)}

≤ nα

{
sig

α
2 (∇�∗)T

{
f + gû + gω∗ +

N∑
i=1

gi
(
Û i − U ∗

i

)}}

≤ nα
{

− |x |αω − B (x, xo) −
N∑

k=1

�ik(U k)

+
( ˆU i − U ∗

i

)�
Rii

( ˆU − U ∗
i

) }
≤ −cU iL

2α
α+2
Vi

+ �̄U i (57)
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where �̄Ui = nαmaxλ̄Ri�Ui denotes the bounded per-
turbation term arising from approximation errors. This
inequality establishes the practical finite-time stability
of the closed-loop system states. By Lemma 3.4, with
0 < γ < 1 being the contraction rate, the Lyapunov
function will be bounded by:

L̂Vi ≤
{

�̄Ui

(1 − γ )cUi

} α+2
2α

(58)

where cUi is the coefficient from Lemma 3.3.
The finite-time convergence of the closed-loop sys-

tem states is guaranteed with settling time:

Tx [x(0)] = LVi [x(0)]1−α

cUi γ (1 − α)
(59)

Therefore, combining the results from Theorem 3.5
and the above analysis, we can conclude:

1. The approximate optimal control inputs Ûi con-
verge to the optimal controlsU ∗

i within finite time
T
Ûi

2. The closed-loop system states x achieve practi-
cal finite-time stability with explicit settling time
Tx [x(0)]

3. The tracking error is ultimately bounded by a func-
tion of the approximation errors �Ui

This completes the proof of finite-time convergence
for both the optimal control approximation and closed-
loop system stability.

�
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